DISEÑO DE BIOREACTORES, Parte 6


DISEÑO DE UN BIOREACTOR CON AIREACIÓN

Un bioreactor con aireación es por definición un reactor contínuo donde la entrada F1 es una línea de alimentación de aire estéril (O2); la salida F2 es una línea de lavado de aire estéril y el sustrato limitante de la velocidad de crecimiento es el oxígeno disuelto (OD).

Existen dos tipos o diseños básicos de bioreactores con aireación; ambos, de uso muy difundido: el primero es tanque agitado con línea de aireación y el segundo es el de levantamiento por aire o "air lift". De este último existe también, una variante que se utiliza para cultivos aeróbicos muy resistentes a esfuerzos cortantes e hidrodinámicos y es la cama de burbujas o “bubble bed”

Estructura de un Reactor Contínuo de Tanque Agitado Con Línea de Aireación: un CSTR con línea de aireación es utilizado, por lo general, como dispositivo fermentador para células y cultivos aeróbicos; su esquema se representa en la figura. En él, la aireación se da en régimen laminar o de transición (Re≤3000) por cuanto estas fermentaciones son destinadas a cultivos de células y microorganismos aeróbicos “sensibles” a esfuerzos cortantes e hidrodinámicos altos. La agitación “extra” requerida se realiza mecánicamente, por medio de: un eje transmisor de potencia provisto de aletas o turbinas de agitación y accionado por un motor de corriente alterna con control de potencia y velocidad.

Nota: imagen tomada de:

www.biologia.edu.ar/cultivo%20y%20biorreactores.htm

Además de esto, es indispensable que el sello mecánico del eje del motor sea hermético y esterilizadle; que las líneas de entrada y salida de aire sean estériles y que la difusión del aire dentro del bioreactor sea controlada en presión, flujo y concentración. Para completar el esquema de diseño: el aire se inyecta por la parte inferior del tanque y es difundido a través de toda la mezcla por una corona con pequeños orificios espaciados regularmente o una boquilla de difusión. La “cama” de aire debe ser un “chorro” de finas burbujas de aire de pequeño diámetro, que salen de cada orificio de la corona o el difusor (boquilla) y y al ser "golpeadas" por las paletas de la turbina o el agitador, se distribuyen por todo el volumen, generándose miles de pequeñas burbujas de aire que, difunden el 02 disuelto hacia el seno del líquido. El sistema de agitación se completa con cuatro o seis deflectores o “baffles” que rompen el movimiento circular que imprimen las paletas de la turbina o el agitador al líquido y generan mayor turbulencia y mejor mezclado; pero sin dañar el tejido o la pared celular de las células y microorganismos (tamaño de Kolmogorov de los Eddies). Finalmente, el tanque debe poseer un intercambiador de calor formado por una camisa por la que circule agua, para poder controlar la temperatura del cultivo y evitar que este muera o sufra un estrés térmico. 

Estructura de un Bioreactor de Levantamiento por Aire:

Cuando el volumen es muy grande (mayor que 1000 l) o se requiere de un mayor volumen de aireación, el sistema CSTR, ya no es eficiente y se requiere del levantamiento por aire. Debido a que, a mayor volumen de cultivo, también es mayor la cantidad de calor generado; se hace necesario, aumentar el área de transferencia de calor y la eficiencia de refrigeración; por lo que, el intercambiador de calor de camisa debe ser reemplazado por uno de serpentín en contra flujo o con circulación adyacente a la pared interior del tanque. Ver esquema representado en la figura.

Nota: imagen tomada de:

www.biologia.edu.ar/cultivo%20y%20biorreactores.htm

Al igual que en el diseño de tanque agitado, el aire que ingresa al bioreactor debe ser estéril; esto se consigue, haciéndolo pasar por un filtro microporo de diámetro de poro inferior a los 0,45 micrones (0.2 µm – 0.1µm) que impida el paso de microorganismos contaminantes. En los bioreactores de levantamiento por aire o "air lift" la cama de aire también funciona como medio de agitación; de modo que, se genere una circulación fluida de líquido con aire (burbujas) que asciende el compartimiento interno y luego desciende por el compartimiento externo, favoreciendo el mezclado perfecto.

Transferencia de 02 y Balance de Oxígeno

La velocidad de transferencia de 02 (r02) desde el seno de la fase gaseosa (burbujas) hasta la fase líquida (medio líquido) está determinada por la siguiente ecuación: rO2 = Kla(C*- C) donde KLa es el coeficiente volumétrico de transferencia de oxígeno; C la concentración de 02 disuelto en el seno del líquido y C* la concentración de O2 disuelto en equilibrio con la presión parcial de oxígeno de la fase gaseosa. El KLa y por lo tanto el grado de transferencia de oxígeno desde el seno del líquido hasta las células o microorganismos en cultivo, dependen del diseño del bioreactor y de las condiciones de operación del sistema de cultivo: caudal de aire, volumen del líquido, régimen de agitación, área de transferencia y viscosidad del cultivo. En general, disminuyen el KLa: la viscosidad y el volumen del líquido y aumentan el KLa: el área de transferencia, la agitación y la presencia de dispositivos que aumenten una, la otra, o ambas.

La ecuación de balance de oxígeno en el estado estacionario es: d(VCO2) / dt = F(C C*) VrO2 + VNiO2 donde Ni es la velocidad de transferencia de un componente del gas (oxígeno) al líquido (medio). Dado que el oxígeno es el substrato limitante de la velocidad de crecimiento, cuando el cultivo se encuentra en crecimiento, el flujo de entrada oxígeno (FiO2) será mayor al flujo de salida de oxígeno (FfO2) debido al consumo de oxígeno disuelto en el líquido por parte de las células o microorganismos en crecimiento y/o división celular. En este caso, la ecuación de balance de oxígeno para células o microorganismos en crecimiento es: d(VCO2) = FiO2C FfO2C* VrO2 + VNiO2 es decir, debe utilizarse la ecuación general.

Sistema de Aireación

El sistema de aireación externamente comprende las líneas de entrada Fi y salida de aire Ff e internamente debe optimizar la transferencia de gases nutrientes (aire) hacia el medio líquido. Un sistema de aireación consta de cuatro partes mecánicas: fuente de aire; tubería y filtros de entrada; boquilla y difusor de aire; tubería y filtros de salida. Y tres partes de control: control de flujo aire; control de presión de aire; control de difusión de oxígeno disuelto.

Fuente de Aire: dado que el sistema de aireación, en su conjunto, depende de la correcta elección del dispositivo que suministrará la fuente de aire, se siguieren dos opciones:

1. Compresor de Aire: su principal característica es que opera con: alta presión y bajo caudal de aire; por eso, cuando operan, es de manera continua o, cuando se requiere capacidad, debe haber un tanque de almacenamiento a alta presión como parte del sistema. Una segunda e importante característica es que produce un alto nivel de ruido ≈ 80dB y una tercera es que, si el compresor es de tipo pistón debe lubricarse con aceite, por lo que, ésta característica se incluye en el diseño como: autolubricado (oiless) o no lubricado (oil lubricated). Existen dos tipos de diseño constructivo para compresores de aire:

a) El compresor de diafragma: esta diseñado para un trabajo de operación contínua; su presión operación es moderada ≈ 60 psia y como su nombre lo indica, utiliza un diafragma o fuelle para impulsar y comprimir el aire. El compresor de diafragma resulta adecuado para oxigenar volúmenes medianos de cultivos o microorganismos aeróbicos.

b) El compresor de pistón: es más utilizado comercialmente, no obstante, para cultivos celulares sensibles (células de membrana plasmática), no es recomendable, por cuanto, su presión de operación es muy alta (80 psia o más) para estos cultivos y puede causar daño celular severo o la lisis de las células; y porque, el pistón debe lubricarse con aceite y esto ocasiona que se filtre en pequeñas cantidades a la corriente de aire.

2. Soplador Regenerativo: se caracteriza por funcionar como si fuera una bomba centrífuga de succión y desplazamiento de aire por lo que, opera con presión negativa (vacío) en la succión y presión positiva (compresión) en el desplazamiento. Aunque su rango de acción es pequeño: ± 20”H2O a ± 40”H2O en cuanto a las presiones de operación, su capacidad de desplazamiento de aire es muy alta 30 cfm – 50 cfm o 1000 L/min – 1500 L/min por lo que, puede movilizar grandes volúmenes de aire.

Tubería – Línea de Aire: esta debe ser de acero inoxidable.

Filtros de las Líneas de Aire: para sistemas pequeños de diámetros de tubería estándar, se utilizan filtros en línea con la tubería; estos son de membrana microporo que filtran el 99.99% de los contaminantes. Para sistemas mayores (industriales) debe diseñarse un método de esterilizar in situ la línea de aire; generalmente se hace calentando fuertemente la línea de aire y luego enfriarla. Las membranas microporo que filtran el aire tienen un punto de burbuja que es la presión de agua máxima que pueden soportan antes de romperse (recuerde que el sistema tiene un medio líquido) y un flujo máximo el cual es el máximo caudal que puede soportar la membrana antes de su ruptura.

Sistema de Difusión de Oxígeno Disuelto: debe optimizar al máximo la transferencia de oxígeno disuelto al medio líquido. El sistema consta de dos partes mecánicas: boquilla y difusor de aire; una parte de medición: sensor de oxígeno disuelto y una de control: controlador de oxígeno disuelto.

Difusor de Aire: los cultivos aeróbicos requieren que la corriente de aire estéril que se difunda en la forma de miles de pequeñas burbujas, desde el difusor de aire, hacia el volumen del líquido; esta acción se realiza mediante un plato o domo cilíndrico de acero inoxidable finamente perforado. Alternativamente y si el sistema es pequeño o mediano en escala, se puede utilizar un difusor de material cerámico poroso el cual, tiene la ventaja de que, provee una cama más fina de burbujas (de menor diámetro) y mayor área de transferencia (volumen de burbujas).

Control y Regulación del Flujo de Aire: recuerde que las membranas que filtran el aire tienen un punto de burbuja y un flujo máximo por encima del cual, se rompen; por eso, se debe regular el flujo de aire y controlar la presión en la línea de aire. La forma más económica de hacerlo es manualmente, con un manómetro para presión. Existe también la versión digital, más costosa, pero que, controla de forma automática el flujo de aire y la presión, según se escoja.

Control y Medición del Oxígeno Disuelto (OD): además de regular el flujo y la presión del aire en la línea o tubería, se debe controlar el valor y la concentración del oxígeno disuelto (OD) dentro del medio líquido; variable que puede medirse en dos formas (parámetros):

a) Oxígeno Disuelto (OD): es la concentración de oxígeno disuelto requerido para la reducción química de un equivalente en iones sulfito (de sodio) a la cantidad de materia orgánica presente en el medio líquido que se debe oxidar.

b) Demanda Bioquímica Oxígeno (DBO): es la taza de oxidación biológica o demanda bioquímica de oxígeno disuelto requerida por el microorganismo o célula en cultivo para oxidar la materia orgánica presente en el medio líquido.

La taza específica de consumo de oxígeno de un cultivo está determinada por la velocidad de transferencia de oxígeno (r02) y el KLa que la correlaciona; recuerde que: rO2 = Kla (C*- C). Se debe conocer la r02 para poder determinar el KLa; el valor de r02 se consigue en la literatura; la concentración de oxígeno disuelto en el líquido (C) es equivalente al valor de OD, e instrumentalmente, se llama: razón de toma de oxigeno (OUR) por sus siglas en inglés; el equivalente a C* (concentración de oxígeno disuelto en el líquido en equilibrio con el gas) es la demanda bioquímica de oxígeno (DBO) que, instrumentalmente se llama: razón específica de toma de oxigeno: SOUR (specific oxygen uptake rate). Ambas razones pueden medirse regularse con un controlador OUR/SOUR de uso comercial.

Una probeta o electrodo OD es un sensor que mide la concentración de oxígeno disuelto en el medio líquido. Similarmente, una probeta o electrodo BOD mide la concentración de oxígeno disuelto en el medio líquido en equilibrio con el gas. ) En ambos casos, el material de su construcción debe ser acero inoxidable y su especificación es por la longitud de inmersión (H) y diámetro (D) de la probeta.

Autor: Reinhardt Acuña Torres

Consultor retirado especialista en temas de biotecnología aplicada, diseño de bioreactores, bioprocesos y otros.

4 opiniones en “DISEÑO DE BIOREACTORES, Parte 6”

  1. hola gracias por poner todos estos datos tan interesantes, es bueno saber que en internet se puede buscar una pagina con informacion util, soy alumno de bioquimica de 7° semestre

    Me gusta

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.